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Non-technical Summary 
The banking crisis has made it obvious that regulators have to take a holistic approach to the 
risks of the banking system. Irrespective of the methods used, it is essential to measure the 
contribution to systemic risk made by individual institutions and groups so that regulatory 

provisions and measures can be applied effectively and according to the causative principle. 

There are a number of well-known proposals for allocating the overall risk. We look at the set 
of systemic risk measures where individual institutions’ market values serve as the basis of 
the estimation. Specifically, we investigate the marginal expected shortfall, the ΔCoVaR and 
an option-based measure, the tail risk gamma, to see whether they set the right incentives and 

lead to the correct conclusions in typical situations. 

First, we compare the measures analytically in a simple linear market model. While the 
marginal expected shortfall shows the desired dependencies, the ΔCoVaR sets a wrong 
incentive: a bank can lower its own ΔCoVaR by increasing its idiosyncratic risks given an 
unchanged interaction with the market, thereby “hiding in the noise” the statistical 

relationship with the system as a whole. 

We also investigate a system in which heavy losses suffered by one bank are transmitted to 
other banks. This one bank can thus “infect” others, while every bank, seen in isolation, bears 
the same risk. We show that ΔCoVaR can assign a lower systemic risk contribution to the 
“infectious” bank while marginal expected shortfall and tail risk gamma arrive at the 

opposite conclusion. 

Finally, we use simulations to investigate whether the systemic risk measures can be 
estimated reliably with realistic quantities of data. In doing so, we assume that extremely bad 
scenarios (tail events) are, in fact, of interest, but that, owing to a lack of observations, less 
extreme events have to be used for the estimation. We show that banks can build up 
positions, for example with the help of options, which make them appear quite secure in the 
event of moderate losses, while simultaneously entering major tail risks. The estimations of 
systemic risk measures based on moderate losses then produce an outcome which is favorable 

in contrast to the real risk. 

The results make it appear doubtful whether market-based systemic risk measures can make a 
substantial contribution to identifying systemically important banks and to determining 
capital surcharges. Their advantage – the use of the information contained in market values – 

is countered by the drawbacks highlighted in this paper.  



Nicht-technische Zusammenfassung 
Durch die Bankenkrise ist offensichtlich geworden, dass Regulierer die Risiken des 
Bankensystems als Ganzes erfassen müssen. Unabhängig von den verwendeten Methoden ist 
es dabei unumgänglich, den Beitrag einzelner Institute oder Gruppen zum Systemrisiko zu 
messen, damit regulatorische Vorschriften und Maßnahmen effektiv und verursachergerecht 

angewendet werden können. 

Es gibt mehrere prominente Vorschläge für die Zuordnung des Gesamtrisikos. Wir betrachten 
die Klasse von Systemrisikomaßen, bei denen Marktwerte der einzelnen Institute als 
Grundlage der Schätzung dienen. Konkret untersuchen wir den marginal expected shortfall, 
den ΔCoVaR und ein optionsbasiertes Maß, das tail risk gamma, darauf, ob sie die richtigen 

Anreize setzen und in typischen Situationen zu den richtigen Schlussfolgerungen führen.  

Zunächst vergleichen wir die Maße in einem einfachen linearen Marktmodell analytisch. 
Während der marginal expected shortfall die gewünschten Abhängigkeiten zeigt, setzt der 
ΔCoVaR einen falschen Anreiz: Eine Bank kann den eigenen ΔCoVaR senken, indem sie bei 
gleichbleibender Wechselwirkung mit dem Markt ihre idiosynkratischen Risiken erhöht und 

dadurch den statistischen Zusammenhang mit dem Gesamtsystem „im Rauschen versteckt“. 

Weiterhin untersuchen wir ein System, in dem sich starke Verluste einer bestimmten Bank 
auf andere Banken übertragen. Diese eine Bank kann andere also „anstecken“, während 
isoliert betrachtet alle Banken das gleiche Risiko tragen. Wir zeigen, dass ΔCoVaR der 
„ansteckenden“ Bank einen geringeren Systemrisikobeitrag zuweisen kann, während 

marginal expected shortfall und tail risk gamma zu dem gegenteiligen Ergebnis kommen.  

Schließlich untersuchen wir mit Simulationen, ob die Systemrisikomaße mit realistischen 
Datenmengen zuverlässig geschätzt werden können. Dabei gehen wir davon aus, dass 
eigentlich extrem schlechte Szenarien (tail events) von Interesse sind; mangels 
Beobachtungen müssen aber weniger extreme Ereignisse für die Schätzung benutzt werden. 
Wir zeigen, dass Banken zum Beispiel mit Hilfe von Optionen Positionen aufbauen können, 
die sie bei moderaten Verlusten recht sicher erscheinen lassen, während sie gleichzeitig große 
Tail-Risiken eingehen. Die Schätzungen der Systemrisikomaße auf Basis moderater Verluste 

fallen dann im Gegensatz zum wahren Risiko günstig aus.  

Die Ergebnisse machen fraglich, ob marktwertbasierte Systemrisikomaße einen wesentlichen 
Beitrag zur Identifikation systemrelevanter Banken und zur Bestimmung von 
Kapitalaufschlägen leisten können. Ihrem Vorteil – Nutzung der in Marktwerten enthaltenen 

Informationen – stehen die in diesem Aufsatz aufgedeckten Nachteile gegenüber. 
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Abstract 

Recent literature has proposed new methods for measuring the systemic risk of financial institu-

tions based on observed stock returns. In this paper we examine the reliability and robustness of 

such risk measures, focusing on CoVaR, marginal expected shortfall, and option-based tail risk 

estimates. We show that CoVaR exhibits undesired characteristics in the way it responds to 

idiosyncratic risk. In the presence of contagion, the risk measures provide conflicting signals on 

the systemic risk of infectious and infected banks. Finally, we explore how limited data avail-

ability typical of practical applications may limit the measures’ performance. We generate sys-

temic tail risk through positions in standard index options and describe situations in which sys-

temic risk is misestimated by the three measures. The observations raise doubts about the in-

formativeness of the proposed measures. In particular, a direct application to regulatory capital 

surcharges for systemic risk could create wrong incentives for banks.  
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1 Introduction 
A key goal of financial regulation is to avoid a breakdown of the financial system, or at least 
keep the probability of such an event at acceptable levels. A breakdown is imminent if many 
relevant financial institutions are simultaneously put under stress. How much an individual 
bank contributes to system risk can depend on several factors, notably the size of the bank, its 
sensitivity to shocks, and the magnitude of spillovers to other banks. While this description of 
systemic risk factors may appear too broad, narrower definitions run the risk of missing 
important aspects. Contagious losses arising from the interconnectedness of banks as well as 
other externalities may exacerbate or even create a crisis, suggesting that an analysis of 
systemic risk should focus on interactions within the system. However, such interactions are 
not a necessary condition for a financial crisis. A severe shock that affects the entire 
economy, such as a large drop in housing prices, can be sufficient to create jeopardizing 

system-wide losses.  

Though the importance of systemic risk has been discussed for many years,2 bank regulation 
has been based mainly on stand-alone measures of an institution’s risk. The recent financial 
crisis, however, has challenged trust in the underlying logic that the stability of a system can 
be adequately controlled if the stability of the system components is controlled individually. 
Reforms that are meant to overcome the shortcomings of traditional microprudential 
regulation are under discussion (see Hanson, Kashyap, and Stein, 2011). An important 
element of this is to make supervisory intensity and capital requirements dependent on a 

bank’s systemic risk contribution. 

As part of this discussion, a number of papers have proposed new empirical concepts for 
measuring systemic risk. Acharya, Pedersen, Philippon, and Richardson (2010) suggest 
examining marginal expected shortfall, which they measure through an institution’s average 
equity return on days in which the market return is below its 5% quantile. Adrian and 
Brunnermeier (2011) advocate the CoVaR measure. This is the value at risk of the system 
conditional on an institution being in distress, or, alternatively, the value at risk of an 
institution conditional on the system being in distress. Knaup and Wagner (2012) recommend 
employing information from index options. Their measure of systemic risk is the sensitivity 
of an institution’s equity returns to out-of-the money index put options. 

The purpose of the present paper is to investigate the reliability of such return-based 
measures of systemic risk. We start by examining a linear market model framework to 
explore whether the measures adequately respond to differences in systematic and 
idiosyncratic risk. While the measures’ sensitivity to systematic beta risk meets the 
expectation, the CoVaR response to idiosyncratic risk is ambiguous. In many situations, the 
use of CoVaR could create incentives for banks to increase their idiosyncratic risk in order to 

lower their estimated systemic risk.  

                                                 
2 See De Bandt and Hartmann (2002) for an early survey. 
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Next, we examine a contagion framework in which negative shocks to one bank spill over to 
other banks. Depending on the parameterization, CoVaR measures can assign a higher 

systemic risk to the infected banks, while – in the situations analyzed here – marginal 
expected shortfall and option-based measures assign the highest systemic risk to the 

infectious bank. 

The problems described so far are conceptual and not due to data problems. In a next step, we 
explore how limited data availability typical of practical applications may limit the measures’ 
performance. The events that regulators are concerned about are so extreme that it is quite 
likely that the data used for estimation do not contain such an event. Extant papers 
acknowledge this problem but argue that it can be contained if less extreme events are 
sufficiently informative about crisis events, if the estimation sample is sufficiently large, or if 

market expectations about crisis events are used. 

Based on simulations, we arrive at a more pessimistic view. We generate systemic tail risk 
through positions in standard index options and describe several situations in which systemic 
risk is consistently misestimated. For example, protective put strategies that are immune to 
extreme shocks can be judged to have high systemic risk because estimation methods rely on 
less extreme return realizations in which option premia depress returns relative to unprotected 
institutions. On the other hand, tail risk can be masked by buying protection against less 

extreme events. None of the methods studied in the paper appears immune.  

In our simulations, we use return profiles that are generated through index options. 
Sometimes the profiles involve relatively large option positions. This could be taken to 
question the relevance of our results because financial institutions may not be able to build up 
such large positions, or hide them if the return-based analysis is complemented by a holdings-
based one. However, credit risk exposures also lead to non-linearities. From structural models 
(Merton, 1974) it is evident that a corporate loan or a credit default swap (CDS) includes an 
out-of-the-money put option on the borrower’s assets. Recently, Carr and Wu (2011) have 
shown that there is a close relationship between CDS spreads and a spread between two deep 

out-of-the money puts on the borrower’s equity.  

Though we focus on the marginal expected shortfall (MES), CoVaR, and option sensitivity 
measures, these measures do not complete the list (for an overview, cf. Bisias et al. (2012)). 
Hartmann, Straetmans and de Vries (2006) and De Jonghe (2009) examine co-crash 
probabilities, a measure which is similar to marginal expected shortfall and CoVaR. Hautsch, 
Schaumburg, and Schienle (2011) propose the systemic risk beta which is conceptually 
closely related to the CoVaR. Brownlees and Engle (2011) and Acharya, Engle, and 
Richardson (2012) refine the MES concept by loss coverage through bank capital. Billio, 
Getmansky, Lo and Pelizzon (2010) use time series analysis to study interrelatedness. They 
examine autocorrelation, time variation in commonality, regime shifts and Granger causality. 
Since we examine processes with constant parameters combined with the assumption of 
efficient market prices, their methods would not help to discover systemic risk in our setup, 
which is why we cannot derive statements on their informativeness. In our somewhat 
idealized setup, which we choose in order to focus on conceptual issues, there is thus also no 
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need to capture time-variation in risk, an empirical issue that is, for example, addressed in the 

work of Hautsch, Schaumburg and Schienle (2011) and Brownlees and Engle (2011).  

In a set of papers, risk assessments are based on banks’ default probabilities (Bartram, Brown 
and Hund, 2007; Huang, Zhou and Zhu, 2009; Segoviano and Goodhart, 2009). Another 
branch of the literature employs a holdings-based analysis of credit exposures, e.g. Upper and 
Worms (2004), Elsinger, Lehar, and Summer (2006), Memmel and Sachs (2011), or 
Gauthier, Lehar and Souissi (2012). These studies are often based on bilateral exposures 
between banks (including repos and counterparty risk from OTC trading). Such detailed 
information allows direct modeling of the network externalities of a bank’s default. For 
example, the contagion index proposed by Cont, Moussa, and Santos (2012) is the expected 
loss of other banks, conditional on the default of a certain bank and macroeconomic stress. 
Webber and Willison (2011) also use bilateral exposures and derive implicit measures. They 
optimize the capital allocation among banks while keeping the VaR of aggregate losses in the 
system under some limit. The resulting capital allocation, relative to the one without 

interbank linkages, can be interpreted as a systemic risk measure. 

As practical calculations of such network based measures still require many strong 
assumptions, for example, on the clearing mechanism for interbank debt or the economic 
conditions under which an initial default occurs, there are attempts to link these measures to 
simpler ones from accounting (size, total interbank lending and borrowing, funding) or 
network theory. Evidence on their performance is mixed. While Gauthier, Gravelle, Liu, and 
Souissi (2011) find that bank size alone is not an appropriate proxy for systemic importance, 
Drehmann and Tarashev (2001) arrive at the opposite conclusion, at least for their preferred 
measure, the Shapley value based on expected shortfall. Theoretical results supporting the use 
of the Shapley value for attributing risk are presented in Tarashev, Borio, and Tsatsaronis 
(2010). Puzanova and Düllmann (2013), who use the MES to measure risk contributions, 
agree with Gauthier et al (2011), similar to Zhou (2009), who uses the probability based 
concept of Segoviano and Goodhart (2009). López-Espinosa et al. (2012) find that, among 
large international banks, short-term wholesale funding is the key driver of ΔCoVaR, while 

size appears to be less important. 

Compared to the holdings-based approaches, which usually require data on bilateral interbank 
exposures or, at least, estimates of them, the equity-return based measures studied in this 

paper have the advantage of being based on readily observable prices.  

Regulators have agreed on assessing systemic relevance with an indicator system that does 
not factor in methods from the above literature, except for the fact that a number of the 
accounting figures used as proxy measures of systemic importance show up as relevant bank-
specific factors in the Basel documents on the identification of systemically important banks 
(Basel Committee on Banking Supervision, 2011a and 2012). However, the regulators also 
stress that the measurement of systemic risk is at “an early stage of development” (Basel 

Committee on Banking Supervision, 2011b, p. 2). 

To our knowledge, there is only one study which examines the informativeness of market-
based measures in a way that is similar to ours. Benoit, Colletaz, Hurlin, and Perignon (2012) 
theoretically analyze systemic risk measures in the model framework of Brownlees and Engle 
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(2011) and find that MES and ΔCoVaR hardly provide any information in addition to that 
captured by market betas and volatilities. However, the result crucially depends on model 
linearity, while we show that nonlinearities can be significant both in the form of infection 
mechanisms and of nonlinear factor dependencies. Benoit et al. (2012) also perform an 
empirical analysis of US banks’ daily stock returns. They find a strong relationship between a 
bank’s MES and its market beta, from which one could conclude that the MES can properly 
be proxied by the beta. However, the authors compare average measures over a long period 
of ten years of daily returns. Whether a similar relationship would hold for the current 
estimates of MES and beta is unclear. Furthermore, the results are based on the commonly 
used 5% quantile level for the MES. Our analysis shows that the 5% level, which is a 
concession to data availability rather than a conceptually motivated choice, can lead to 
misleading systemic risk rankings for more extreme levels that regulators are actually 

interested in.  

The remainder of the paper is structured as follows. In Section 2, we introduce the systemic 
risk measures studied in this paper. Section 3 discusses possible problems in a linear return 
setting, while Section 4 introduces contagion. In Section 5, we examine the ability of the risk 
measures to identify systemic tail risk in a setting that is typical of practical applications. 

Section 6 concludes. 

2 Systemic risk measures studied in this paper 

Marginal expected shortfall 

The marginal expected shortfall (MES) put forward by Acharya et al. (2010) is defined as 

 i i m mMES E R R Q   , 

where iR  denotes the net equity return of institution i , mR  is the market return, and mQ  is the 

quantile of the market returns on level  . We follow Acharya et al. (2010) and examine daily 

returns with a confidence level  of 5%.  

CoVaR 

Adrian and Brunnermeier suggest measures based on what they call CoVaR, which is 

implicitly defined through 

  | ( )Pr
ij j C X iX CoVaR C X    

CoVaR therefore is the value at risk (VaR) of object j  conditional on event C  happening to 

object i . Taking the event to be that i  is at its VaR level, they suggest to examine 

 |, | .
i i i ij X VaRj i j X MedianCoVaR CoVaR CoVaR

  
     
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,j iCoVaR  therefore measures the change in the  -VaR of j  conditional on i  moving from 

its median state to its own  -VaR. Adrian and Brunnermeier (2011) mostly examine the 

case in which j  is given by the overall system, i.e. a market index or a collection of banks, 

and i  is an individual institution. However, they also consider the opposite direction in what 

they call exposure CoVaR, which is defined through  

|, |systemi system system systemj X VaRj system j X MedianCoVaR CoVaR CoVaR
  

     
,j systemCoVaR  is the change in the VaR of portfolio j  conditional on the system moving into 

distress. ,j systemCoVaR  is more akin to iMES  than ,system jCoVaR . 

When we examine CoVaR’s expected performance in practical applications, we estimate it 

with a quantile regression over 25 years of weekly data, choosing a confidence level   of 

1%. This corresponds to the empirical application in Adrian and Brunnermeier (2011). In the 
conceptual analysis of Sections 3 and 4, we abstract from estimation problems by deriving 
results through closed-form expression, or Monte Carlo simulations with a large number of 

observations. 

Adrian and Brunnermeier (2011) suggest that, in the presence of time-varying risk, the 
precision of CoVaR estimates can be improved by conditioning the return-based estimates on 
current fundamental information. As we do not introduce time variation in risk parameters, 
the unconditional return-based estimates are optimal, which is why we do not model the 
conditional distribution. Another difference from the empirical approach of Adrian and 
Brunnermeier (2011) is that we examine equity returns rather than asset returns. This is done 
for the sake of exposition, as the other two measures examined in the paper are based on 
equity returns. While the choice of equity rather than asset returns can have an effect in 
practical applications, it does not affect the general results here. We model our equity returns 
as being normally distributed; this is also the standard assumption for asset returns in Merton 
(1974) type models. Thus, we could classify the returns in the CoVaR analysis as ‘asset 
returns’ and would still be in line with assumptions commonly made in the literature. 

Tail risk gammas 

Knaup and Wagner (2012) advocate the inclusion of forward-looking information available 
through market prices of out-of-the-money index put options. The sensitivity of an 
institution’s equity return to changes in put option prices is estimated through the following 

linear regression: 

t
t

tt
mtit u

p

pp
bRaR 








1

1
 

where tp  denotes the option price of a put on the market index.3  

                                                 
3 As derived by Knaup and Wagner (2012), the denominator of the put variable is 

1tp strike   rather than 
1tp 
. 

Since we will use constant volatilities and constant strike prices, the definition of the denominator would not 
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The higher the estimated gamma, the higher the estimated systemic risk, conditional on the 
standard beta measure of systematic risk. In their empirical application, Knaup and Wagner 
study daily equity returns. They use put options with a maturity between three and six 
months; the average strike price is 67% of the index value. In line with their choice, we will 

use put options with a maturity of four months and a strike equal to 70% of the index value. 

3 Systemic risk measures in the linear case 
In this section, we use a linear return framework to examine whether the suggested measures 
for systemic risk fulfill elementary requirements with respect to a bank’s choice of systematic 

and idiosyncratic risk.  

Consider a banking system consisting of N  banks. In the first case that we examine, iR , the 

equity return of bank i , is determined by the exposure to a common risk factor F  and 

idiosyncratic risk i . Both factor returns and idiosyncratic components are assumed to be 

independent normal random variates. Let us further assume that the N  banks do not differ in 

their market capitalization. The value-weighted index of bank returns is therefore equal to the 
simple average of the returns. We follow Adrian and Brunnermeier (2011) and take this 
system return to be the one that takes the role of a general market index, including the MES 

and tail risk gamma analysis.  

The system and its components are described through the following equations:  

 

   
1

2 2

1
,

with ~ , ( ) , ~ 0, ( ) ,

N

i i i S i
i

i i

R F R R
N

F N F N

 

    


   
 (1) 

where F  and all i  are independent, i  denotes the exposure to the common factor, and SR  

is the return on the banking system index. To calculate measures of systemic risk, we need to 
specify conditional distributions. Due to the linearity of the system and the normality of the 

random variables, we can approach the problem in a linear regression framework.  

We start with an analysis of CoVaR measures. When we condition SR  on iR , we study an 

orthogonal representation 

,iiiiS vRdcR    

and obtain: 

                                                                                                                                                        
change the results. Our gamma estimates are perfectly linearly related to the gammas that would be obtained 
with the denominator of Knaup and Wagner (2012). 
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 (2) 

When we use CoVaR to study the extent to which the system is affected by bank i , we 

obtain: 

 

, 1 1

1 1

1 1

( ) ( ) ( ) ( )

(0.5) ( ) ( ) ( )

( ) ( ) (0.5)

S i
q i i i i

i i i i

i i

CoVaR c d q R q v

c d R q v

d R q

 

 



 

 

 

      
     

    

 (3) 

Let us first study the case in which all banks have the same exposure ( ) to the common 

factor but differ in their idiosyncratic risk. We can then combine (2) and (3) as follows: 

 

, 1 1 1

2
1

2

2
2 1

( )[ ( ) (0.5)] ( ) ( )

1 ( )
1 ( ) ( )

( )

1 1 ( )
( ) ( )

( )

S i
q i i i i

i j i
j i i

i
i

CoVaR d R q d R q

F
R q

N R

N F
R q

N N R

 

  


 


  







     

 
   

 
 

   
 

  (4) 

If a bank increases its idiosyncratic risk, there are two opposing effects on CoVaR: As 

captured in the first term within the parentheses, an increase in idiosyncratic risk increases 

CoVaR. Since the bank is part of the system, the system co-moves with the idiosyncratic 

risk of bank i , which is reflected in CoVaR. This effect becomes smaller, the lower the 

weight of the bank within the system is. 

As captured in the second term within the parentheses, an increase in idiosyncratic risk 

decreases CoVaR because higher idiosyncratic risk means that the bank’s return contains 

less information about the system. This effect becomes larger, the lower the weight of the 
bank within the system is. 

How CoVaR is affected by an increase in idiosyncratic risk therefore depends on the 

composition of the system as well as on other parameters, such as the relative magnitude of 
factor risk and idiosyncratic risk. In Figure 1, we show the CoVaR for two exemplary banks 
that differ in their idiosyncratic risk. The choice of parameters is meant to be typical of daily 
returns. Qualitatively, results would not be affected if we scaled returns to other horizons. 
Specifically, we choose uniform beta values of 1 and the following volatility parameters 

(stated as per annum figures):   0.2F  ,   0.2i    for 1N   banks, and   0.4i    for 

one bank. To translate the parameters to daily returns, we divide by the square root of 260. 

The figure shows that a higher idiosyncratic risk can have an ambiguous impact on CoVaR. 

For a small number of banks, the bank with the larger idiosyncratic risk has a larger systemic 

risk according to CoVaR because effect (i) described above dominates effect (ii). Once the 
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number of banks is larger than three, the picture reverses. In this region, CoVaR suggests 

that the bank with the higher idiosyncratic risk has a lower systemic risk.  

Figure 1: How CoVaR responds to idiosyncratic risk 
We examine a banking system with N equally-sized banks. Returns are described through: 

1

1
,

N

i i i S i
i

R F R R
N

 


   
 

with 2 2~ ( , ( )), ~ (0, ( ))i iF N F N     .  

All i  and F  are independent. For the analysis, banks are assumed to have uniform beta of 1; N–1 banks have 

a per annum idiosyncratic volatility of 0.2, while one bank has an idiosyncratic volatility of 0.4. The figure 
shows how ,system jCoVaR  differs between the riskier bank and the other banks, depending on the number of 

banks in the system. 

 

What do these results imply for the usefulness of CoVaR as a measure of systemic risk? It 

seems plausible that higher idiosyncratic risk should be captured by CoVaR if the bank is so 

large that its idiosyncratic risk affects the system. For many banks, on the other hand, the 
second effect is likely to dominate in practice. It will be in the interests of those banks to 
increase their idiosyncratic risk because they will then be judged to have lower systemic risk. 
It is doubtful whether it is beneficial for system stability if the systemic risk measure used by 
regulators creates an incentive for banks to increase their idiosyncratic risk. 

With respect to systematic risk, CoVaR gets it right. Inspection of equation (4) shows that 

an increase in beta makes the bank have higher systemic risk as judged by CoVaR.  

We now turn to what Adrian and Brunnermeier (2011) call exposure CoVaR. For this 

measure, we condition iR  on sR  rather than sR  on iR . In our analysis, we therefore study 

 ,i i i s iR a b R u    

and obtain for a uniform  : 
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 (5) 

When we use the exposure CoVaR to study the extent to which bank i  is affected by the 

system, we obtain: 

 

       
       

       

, 1 1

1 1

1 1 1
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0.5 ( )
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q i i s i
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a b R q u

b R q b R q

 

 

 

 

 

  

      
     

      

 (6) 

Let us again study the case in which all banks have the same exposure (  ) to the common 

factor but differ in their idiosyncratic risk. Inserting (5) into (6) leads to: 

 

, 1

2 2 1 2
1

2 2 2 2

( ) ( )

( ) ( )
( ) ( )

( ) ( )

i S
q i s

i
s

jj

CoVaR b R q

F N
R q

F N



    
   








  


 

 
 (7) 

Standard calculus shows that ib , i.e. the fraction in (7), increases if any  2
i   of the single 

idiosyncratic risks increases. The same holds for  sR . As  1   is negative for the   

of interest, the whole (negative) ,i SCoVaR  is falling in  2
i  . Hence, there is now only 

one effect on CoVaR: An increase in idiosyncratic risk increases the systemic risk attributed 

by CoVaR. The intuition is that higher idiosyncratic risk means that the system’s return 

contains less information about the bank in question. This effect becomes weaker, the lower 
the weight of the bank within the system is. Thus, the problematic effect discussed above 
does not arise. As before, changes in systematic risk lead to the desired effect, i.e. the 

exposure CoVaR attributes a higher systemic risk. 

The next measure considered is the marginal expected shortfall (MES): 

  i s SMES E R R Q   

As in exposure CoVaR, a bank’s return is conditioned on the system return. We therefore 

start by using the market model structure from above, ,isiii uRbaR   and obtain 

   
   

i s S i i s i s S

i i s s S i s S

MES E R R Q E a b R u R Q

a b E R R Q E u R Q

 

 

     

    
. 

By construction of an OLS regression, iu  and sR  are uncorrelated. Because their joint 

distribution is multivariate normal (both are linear images of independent normals), they are 

independent, so that  i s SE u R Q   is zero. We therefore obtain 
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 i i s s SMES a b E R R Q    

where  s s SE R R Q  can be determined using familiar results for truncated normal 

distributions. 

In Appendix A.1 we show that adding idiosyncratic risk increases the systemic risk as 
measured by MES, as does an increase in systematic risk. The MES measure does not exhibit 
unwanted characteristics with respect to the choice of risk in the chosen setting. 

The third measure that we focus on in this paper is the tail risk gamma. In the linear case 
studied in this section, the market model, which is nested in the tail risk gamma approach, 
provides the best possible description of a bank’s return. The expected tail risk gamma is 
therefore zero irrespective of the choice of idiosyncratic risk and systematic beta risk, which 
means that we cannot derive statements on tail risk gamma properties within the setting of 
this section.  

4 Systemic risk measures in the contagion case 
After studying linear return relationships within a simple one-factor model, we now turn to 
examining contagion effects. An overview of different contagion definitions is given in 
Pericoli and Sbracia (2003). We choose one in which contagion is brought about by changes 
in the transmissions of shocks.  

Assume that the returns of the banks and the system evolve according to  

  1

1 1 1

2 1

,

, 2,...,

1

j j

s j
j

R F

R F I j N

R R
N

 

 
   

 
   

 

 (8) 

That is, there is contagion from bank 1 to the other banks in the system. If bank 1 is afflicted 

by a realization of idiosyncratic risk that is worse than , other banks are partially affected, 

too. Other assumptions regarding the distribution of F  and the j  are the same as above, i.e. 

they are independent normal variates. Since the dependence structure is now considerably 
more involved, we resort to Monte Carlo simulation to derive statements about systemic risk 
measures. To isolate the effects of contagion, we study a case in which the infectious and the 
infected banks do not differ in their variances. To this end, we need to determine the variance 

of  1 1I    : 
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         
    

 

Both conditional moments can be calculated using familiar results for truncated normal 
variables.  

We determine the systemic risk measures using 50 million simulated return observations for 
each bank, which also implies simulated values for the system return RS. To increase 
precision, we use antithetic sampling for the factor returns and idiosyncratic shocks. When 

calculating CoVaR, we need to condition on the VaR, which is observed with measure zero 

in the simulations. We therefore employ an interval around the VaR for conditioning. 

Specifically, we condition on the observations in the interval defined by the  0.2%q   and 

 0.2%q   quantiles of the simulated data. The 
1

1|
01.0

qVaRRSCOVAR  , for example, is determined 

as follows: select the runs in which the return 1R  lies between the 0.8% and 1.2% quantile of 

1R , and determine the 1% quantile of sR  for this selection. The exposure CoVaR is 

determined accordingly. 

The MES is determined as the average simulated return of a bank given that the simulated 
system return is below its 5% quantile. 

The tail risk gamma is based on a regression of the simulated bank returns on the simulated 
system return and the change in out-of-the-money put options written on the system index. 
Similar to Knaup and Wagner (2012), we study options with a maturity of four months and a 
strike price equal to 70% of the index level. Put option prices are determined using Monte 
Carlo simulation and risk neutral valuation. We need to determine new put option values for 
the one-day-ahead index levels that occur in the simulations. With the parameters chosen 
here, there is no one-day system return outside the interval [–0.1, 0.1]. For each index value 

in [0.9initial index value, (0.9+0.0001)initial index, … , 1.1initial value] we use Monte 

Carlo simulations to determine the value of a put option, whose maturity has by then changed 
to four months minus one day. For the analysis, the simulated index value is paired with the 
closest index value for which a put option price has been determined. 

As in the previous section, the simulation is conducted using assumptions typical of daily 

returns. Beta values are uniform, 1 1j   , and the following per-annum drift and volatility 

parameters are chosen:   0.2F  ,  1 0.2   ,        1

0.5
2 2

1 1varj I          for 

all 1j  , and   0.05E F  . The risk-free rate is set to 0.02. To translate the parameters to 

daily returns, we divide by 260 in the case of  E F  and by the square root of 260 in the case 

of standard deviations. The number of banks is set to 50N  . The contagion threshold  is 
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set to either –0.0204, –0.0289 or –0.0383, corresponding to the 5%, 1%, and 0.1% quantile of 

1 . The responsiveness to contagion,  , is set to either 0.75 or 0.25. 

Table 1: Simulated systemic risk measures in the presence of contagion 
We simulate banking systems with N equally-sized banks. The banking system return is the value-weighted 
average of bank returns. Bank returns are driven by a common factor, idiosyncratic risk, and spillover from bank 
1 to other banks: 

 1

1 1 1

1

, (infectious bank)

, 2,..., (infected bank)

1

j j j

S i
i

R F

R F I j N

R R
N

 

 
   

 
   

 

 

Parameters are set to 50N  , 
1 1j   , and (stated in per annum values):   0.05E F  ,   0.2F  , 

 1 0.2   ,        1

1/2
2 2

1 1varj I          for all 1j  . CoVaR measures are estimated through Monte 

Carlo simulation with 50 million trials. For CoVaRq, they are computed with observations between the (q – 
0.2%) and (q + 0.2%) quantiles of the conditioning variable. For the tail risk gamma, put prices are obtained 
through a separate Monte Carlo simulation, and then used in a regression of the bank’s return on the system 
return and the change in the option price. Fields are shaded gray if the measure assigns more systemic risk to the 
infected than to the infectious bank.  

 iRSCoVaR |
01.0  SRiCoVaR |

01.0  MES 
Tail risk 
gamma 

Panel A:  = 0.75  = –0.0204 

  Infectious –2.091% –3.154% –3.103% 0.670% 

  Infected –2.793% –3.324% –2.944% –0.017% 

Panel B:  = 0.75  = –0.0289 

  Infectious –2.091% –3.003% –2.772% 0.217% 

  Infected –2.581% –3.091% –2.705% –0.005% 

Panel C:  = 0.75  = –0.0383 

  Infectious –2.090% –2.930% –2.602% 0.047% 

  Infected –2.232% –2.944% –2.591% –0.001% 

Panel D:  = 0.25  = –0.0204 

  Infectious –2.086% –3.398% –2.740% 0.201% 

  Infected –2.139% –2.937% –2.618% –0.005% 

Panel E:  = 0.25  = –0.0289 

  Infectious –2.090% –3.082% –2.630% 0.081% 

  Infected –2.116% –2.938% –2.582% –0.001% 

Panel F:  = 0.25  = –0.0383 

  Infectious –2.082% –3.025% –2.575% 0.016% 

  Infected –2.092% –2.903% –2.567% –0.001% 

 

Results are reported in Table 1, which shows that CoVaR measures do not provide a clear 

identification of contagious banks. Depending on the contagion threshold, the contagion 

intensity, as well as on the direction of the CoVaR measure, the bank that is infectious can 

be assigned a lower or a higher CoVaR than the bank that becomes infected. The difference 

is most pronounced in Panel A, which assumes strong contagion effects for idiosyncratic 
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shocks below their 5% quantile, i.e. a case in which the region used for conditioning will 
include many instances of contagion.  

This result is surprising since a strong idiosyncratic loss incurred by the infectious bank 
causes substantial losses for all other banks and hence for the system. Such a contagion can 

be expected to appear more often in the event    R
1 1 1
R Q R  than in 

   R j j jR Q R , where j  denotes any of the infected banks. These are the conditioning 

events of the CoVaR. We would therefore expect the system’s risk to be rather large when 

conditioning on 1R , compared to conditioning on jR , where contagion is less frequent.  

To get an intuition why we find the opposite, Panel A of Figure 2 plots the system return 
against the return of the infectious bank and the return of an infected bank, respectively, 
choosing parameters as in Panel A of Table 1. Conditional on the bank returns being at their 
1% quantiles, the system return has a larger variance in the case of the infected bank, which 

leads to a more extreme CoVaR. The explanation for the difference in the variances is found 

by splitting up the events 1R  and jR  into the cases with and without contagion.  

Panel B plots instances of contagion, which we subsume under  1  C . The left-hand 

graph shows a strong (C -conditional) correlation between 1R  and the system return so that, 

once 1R  is fixed at its quantile, SR  exhibits only low variation. The reason for the high 

correlation is that the bank’s idiosyncratic risk has spread through the system. To show this 

formally, consider 1 R C . The first line of (8) then gives   1
1 1F Q R   , which we 

can plug into the second line to eliminate F  in the representation of jR . Averaging over 

individual returns, the system return now reads  

  1 1
2

1 1 1 N

s j
j

N
R Q R

N N N    


       


.
 (9) 

Its variance is low because the first term on the right-hand side is deterministic, the 

coefficient in brackets is small for large N  given   and   are not too different, while 1  

has low variance under C  anyway, and the third term is diversified over independent risks 

and hence of low variance, too. In contrast, no such strong relationship between system and 
individual return exists if an infected bank is in distress. Rewriting the system return in the 

same manner as above gives, under j R C , 

   1
2

1 1 1 N

s j i j
i

N
R Q R

N N N     


            
  (10) 
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Figure 2: Simulated system returns versus returns of infectious and infected banks 
We simulate a banking system with N equally-sized banks. The banking system return is the value-weighted 
average of bank returns. Bank returns are driven by a common factor, idiosyncratic risk, and spillover from bank 
1 to other banks: 

 11 1 1 1

1
 (infectious bank),  , 2,..., (infected bank),  j j j S i

i

R F R F I j N R R
N             

 
Parameters (per annum) are set to   0.05E F  ,   0.2F  ,  1 0.2   ,        1

0.5
2 2

1 1vari I          for 

all j > 1, N = 50. Panel A plots the full sample. Panel B contains only cases of contagion, where 
1  . Panel C 

contains cases of no contagion. 
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with a similar structure, except for the last addend. This term bears substantial variation 

relative to the others and is the reason why the standard deviation of sR  under j R C  is 

considerably larger than under 1 R C .  

Realizations without contagion are plotted in Panel C of Figure 2. While the graphs indicate 
differences in the joint conditional distributions, the latter are similar in the part relevant for 
the ΔCoVaR. To see this more clearly, consider the counterparts to (9) and (10) in the 
absence of contagion, which are 

  1 1
2

1 1 N

s j
j

R Q R
N N   



         
  

for 1R \C  and  

   1
2

1 1 N

s j j i
i

R Q R
N N   



      
  

for \jR C . The expressions in brackets in both formulas are not identical as 1  is bounded 

from below (we are in the non-contagion case) while j  
is not. However, the distributions of 

1  and j  are quite similar for positive realizations so that the conditional distributions of sR  

are similar on the negative half, which is the part relevant for ΔCoVaR. 

Having analyzed the risk of sR  with and without contagion separately, we now put both cases 

together. We observe that the low variance of sR  under 1 R C  (compared to j R C ) is not 

offset by an opposing relationship in the non-contagion case ( 1R \C  vs. \jR C ), where the 

relevant parts of the distribution are fairly similar. Even if contagion were equally frequent 

under 1R  and jR , we would thus observe that the CoVaR of an infected bank is more 

negative than the CoVaR of the infectious bank. In fact, contagion is more frequent under 1R  

so that the total effect is even stronger. 

As demonstrated by this example, contagion can cause complex return patterns which make it 
difficult to identify the infectious bank with a CoVaR-type measure.  

One might suspect that the ambiguities associated with CoVaR arise from problems 
associated with value at risk, and that they can be eliminated by moving to co-expected 
shortfall (CoES). However, further analysis shows that this is not the case. For example, 

when we implement the CoES as suggested by Adrian and Brunnermeier (2011) for the 

parameters of Panel A, the CoES is –1.92% for the infectious bank and –2.57% for the 

infected bank.  

In each of the cases studied here, MES and tail risk gamma, by contrast, assign a higher 
systemic risk to the infectious bank. Both measures appear to be more robust because they do 
not focus on a single quantile of a distribution but on a range of quantiles. If contagion leads 
to extremely negative returns, MES will pick it up because it averages across the bad days of 
the market, while the tail risk gamma picks up the concavity that is generated by the 
contagion effects. 
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Of course, there might be other contagion structures in which these measures provide 
different rankings of contagious and infected banks. Also, the differences in MES and tail 
risk gamma appear to be relatively small in some cases. Given that the infectious bank in the 
example has a strong influence on other banks, one would perhaps expect larger 
discrepancies. The MES difference of –3.103% versus –2.944% in Panel A has the same size 
as the MES difference between two non-infectious banks that have betas of 1 (MES = –
2.74%) and 1.07 (MES = –2.56%), respectively. While regulators would probably view the 
infectious bank with great suspicion (if they knew about the infection mechanism as modeled 
here), they probably would not pay the same attention to a beta difference of 0.07.  

We conclude by noting that it is not necessarily obvious from a regulatory perspective 
whether a systemic risk measure should assign a higher risk to contagious banks. In the 
presence of contagion, financial stability can be increased by imposing stricter standards on 
contagious banks, thus reducing the likelihood and magnitude of contagious events. 
However, it could also be increased through stricter standards for infected banks, i.e. by 
reducing the consequences of a contagious event. The lesson to be drawn from this section is 
therefore not so much that some measures correctly identify contagion while others do not. 
Rather, it shows that risk measures can provide conflicting risk rankings, and that even 
simple contagion structures can be difficult to identify. 

5 Empirical robustness of tail-risk measurement 

5.1 Measurement issues 

The main interest of financial regulators lies in extreme events. Acharya et al. (2010, p.15) 
“think of systemic events […] as extreme tail events that happen once or twice a decade (or 
less), say.” On a daily frequency, this corresponds to events occurring with a probability of 
less than 0.1%. In a typical sample available for estimation, such events are either not 
observed, or their number is so small that it is difficult to base statistical inference on the 
extreme events only. The literature is aware of these problems and suggests the following 
solutions.  

Acharya et al. (2010) examine events that occur with a probability of 5%. With the help of 
extreme value theory and assuming power law distributions, they show that the ultimate 
object of interest, which they call systemic expected shortfall, is linearly related to the 5% 
MES as well as other variables. If return distributions are similar and of the kind assumed by 

Acharya et al., this promises that the order of iMES  in a group of banks does not change 

strongly if the tail probability is raised from, say, 0.1% to 5%. Adrian and Brunnermeier 
(2011) suggest using a large sample of historical returns in order to include as many extreme 
events as possible. Since the risk characteristics of financial institutions can change over 
time, they study not only unconditional risk estimates, but also estimates of the conditional 
distribution as a function of state variables. Knaup and Wagner (2012), finally, try to 
circumvent the data problem by utilizing the information contained in put prices. 
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For the following reasons, some skepticism appears to be in order. The theoretical results 
presented by Acharya et al. (2010) rest on the assumptions made in their paper and do not 
hold in general. We will show that the relationship between MES and extreme risk can break 
down if portfolios include standard option positions. Adrian and Brunnermeier (2011) face a 
similar challenge. Even 25 years of data may not be enough to identify co-movement in very 
extreme scenarios. Note that in the examples studied here, there is no time variation in risk 
parameters, which is why we do not model the conditional distribution. The use of put 
options in Knaup and Wagner (2012), finally, expands the information set by including 
market expectations about extreme events. If such expectations do not change significantly 
over the estimation sample, however, there is again only little information that can be used to 
estimate the object of interest. As the examples show, the tail risk gamma of Knaup and 
Wagner (2012) faces a problem similar to that of the other two measures. Gamma estimates 
may predominantly be based on less extreme changes in market expectations, and there is no 
guarantee that there is a robust link between a portfolio’s sensitivity to very extreme and less 
extreme changes, respectively. 

5.2 Some archetypical portfolio structures 

We examine the risk measures’ robustness by determining them for a number of portfolios 
that differ in tail risk. These differences are engineered through positions in standard options 
as well as differences in beta risk. For simplicity, we perform calculations in a Black-Scholes 
world with lognormally distributed market index returns. We assume a risk-free rate of 2% 
and a stock market volatility of 20%. To approximate individual portfolios, we assume an 
idiosyncratic volatility of 20%. Portfolios differ in their betas and in option positions. 

Without options, the portfolio return of institution i  from 1t   to t  would be 

 it f i mt f itR R R R     , 

where fR  denotes the risk-free rate, mR  the market return, and it  is the idiosyncratic risk 

with a variance of 20.2 / 260 . We refer to a portfolio without options and 1   as the 

baseline portfolio.  

At the end of each day, various put options with a maturity of 30 days are bought or sold, 

indexed by j  and each with a (positive or negative) weight ijw  relative to the portfolio value 

without options. If aggregate option weights are positive, funding is obtained at the risk-free 
rate; otherwise the obtained cash is invested in the risk-free asset. The option positions are 
unwound at the end of the following day. 

Let  , ,p S K S d  be the Black-Scholes price of a put option if the price of the underlying is 

S , for a time to maturity of d  days and a strike price K S . Normalizing the index price to 

one, the return of a portfolio from 1t   to t  obtains as 

   
 

1 , ,29
1 1

1, ,30

mt ij

it ij f i mt f ij it
j j ij

p R K
R w R R R w

p K
 

  
             

   
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We analyze the performance of systemic risk measures for four archetypical pay-off 
structures, denoted by A to D. In each setting, there are 16 portfolios which share the same 
archetypical structure but differ in their risk. The first portfolio is always equal to the baseline 
portfolio. 

In setting A, portfolios do not contain options. They differ in their betas, which linearly 
increase from β = 1 for portfolio A1 to β = 2 for A16. Figure 3 plots the market return against 
expected portfolio returns, conditional on the market return, for portfolio A16 and the 
portfolios No. 16 of the other types. 

In setting B, portfolio No. 16 has short positions in out-of-the-money put options (weight 
0.45% , strike 0.8), which are balanced with long positions in at-the-money put options 

(weight 3%). This produces a concave return profile (Figure 3). Compared to the market 
portfolio (gray line), the portfolio generates smaller losses on days with a moderately 
negative market return, leaving aside idiosyncratic risk. Assuming a drift rate of 5%, the 5% 
quantile of the market return is –2%. In such an event, the portfolio performs better than the 
market. Its performance drops below the market when the market return hits –2.5%. With the 
assumed distribution, this happens with a probability of 2.1%. On the way from portfolio B16 
to portfolio B1, option weights are linearly reduced to zero while betas linearly step down 
to 1. 

In setting C, out-of-the-money put options (weight 0.75%, strike 0.8) provide protection or 
even overprotection against large losses, while an increase in betas provides upside 
participation. Due to its high beta and the put being far out of the money, Portfolio C16 is 
comparable to the baseline portfolio with a leveraged systematic component, as long as 
returns are moderate. Observing such moderate returns suggests that the portfolio is riskier 
than in the baseline. If losses in the market index are large, however, the protection provided 
by the put overcompensates losses in the market component (at a probability of 1.23%, if 

2.8%mR   ) and can even generate profits (with a probability of 0.06%, if 4%mR   ). On 

the way from portfolio C16 to portfolio C1, option weights are linearly reduced to zero, while 
betas are linearly reduced to 1.  

In setting D, two put options are included, and the beta of 1.375 for portfolio D16 is only 
slightly increased against the baseline portfolio. The long put position that is less far out of 
the money (0.725) has quite a heavy weight of 5.7% and so sets a nearly perfect floor on the 

losses in the systematic component. This works as long as mR  does not fall short of 2.8% . 
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Figure 3: Market return versus portfolio return in four archetypical settings 
Assuming that market returns follow a lognormal distribution with p.a. drift 0.05 and volatility 20%, we analyze 
daily returns of 16 portfolios in four settings, A to D. Portfolios No 16 are defined as follows: 

A16: = 2. No options. 

B16: = 1; –0.45% in one-month put with strike 0.8; 3% in one-month put with strike 1. 

C16: = 2.125; 0.75% in one-month put with strike 0.8 

D16: = 1.375; –4.5% in one-month put with strike 0.7; 5.7% in one-month put with strike 0.725 

Weights for portfolios x.1 to x.16 obtain by linearly adjusting betas to 1, and option weights to zero. The idio-
syncratic volatility is set to a uniform value of 20%. Option values are determined with Black-Scholes.  

The solid line in each graph plots the market return against the expected portfolio return, conditional on the 
market return. The straight gray line marks the conditional return of an options-free linear portfolio with beta = 
1. 



If it does, the second, short put option position (strike 0.7, weight –4.5%) gains impact and 
generates dramatic losses. A key difference between the profiles of setting D and those of the 
other settings is that the return profiles in D are not globally concave or convex. This 
complicates inference about extreme losses. On the way from portfolio D16 to portfolio D1, 
option weights are again linearly reduced to zero, while betas are linearly reduced to 1. 

Errors in estimating the systemic tail risk of portfolios can arise for various reasons. First, the 
relationship between portfolio payoffs and systemic factors may be so nonlinear and even 
non-monotonic that risk measures for different loss severities are only loosely connected. 
Second, estimations can be noisy due to sampling error, and, third, the estimators may be 
misspecified, for instance, by assuming nonlinear dependencies to be linear. We examine 
these errors separately. In Section 5.3, we use precise MES and CoVaR under varying tail 
probabilities to analyze how well low-probability risk measures can be inferred from 
medium-probability ones. As estimation errors are excluded, the results provide an upper 
bound for the quality that can be achieved in reality. In Section 5.4, we perform a simulation 
exercise where MES, CoVaR, and tail risk gamma are estimated under realistic conditions.  
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5.3 Comparing exact risk measures for different confidence levels  

For all portfolios from A1…A16 to D1…D16 we calculate precise MES and both types of 

CoVaR at confidence levels of 0.1%, 1%, 5%, and 10%. With our assumptions, the 

exposure CoVaR can be computed analytically, while MES and ΔCoVaR are determined 

through numerical integration. The 0.1% confidence represents the object of interest as it 
corresponds to a probability with which systemic events occur. A 1% confidence is used in 

the CoVaR estimations of Adrian and Brunnermeier (2011), while Acharya et al (2010) 

suggest choosing the 5% MES as a proxy for the unobservable systemic expected shortfall. 
The tail risk gamma approach of Knaup and Wagner (2012) does not lend itself easily to a 
similar exercise. We could study gammas for different choices of moneyness. However, 
Knaup and Wagner already choose options that are deep out-of-the-money, corresponding to 
very extreme events.  

Separately for each setting, and singling out four portfolios, exact MES and CoVaR for 

different confidence levels are presented in Figure 4. Not surprisingly, risk measures of the 
portfolios in setting A are in the expected order according to the varied beta. In Appendix A.3 
we demonstrate that an extrapolation from 1%, 5%, and 10% to 0.1% performs well.  

Things are different for setting B. Running from B1 to B16, the MES curve more or less 
rotates around the values for a confidence level of 1%. The variation in the 0.1% MES is 
strongest. This “rotation” means that the proposal by Acharya et al. (2010) to choose the 5% 
MES as a proxy would fail; precisely the wrong order would be predicted. The result for the 
exposure ΔCoVaR is very similar. The shape of the curves suggests trying an extrapolation: 
assuming that the MES at 1% or higher could be estimated with great precision, it seems that 
an extrapolation might work well because the convexity of each curve at 5% nicely 
corresponds with the convexity at 1% (see Appendix A.3).  

The ΔCoVaR does not fit into the pattern. It assigns the lowest systemic risk to the most risky 
portfolio B16 – but now on all confidence levels. To get an intuition why, let us mimic the 

concave structure of the portfolio by a simpler, piecewise linear profile with a kink in k : 

 
 kink 1 :

:
i m i i m

i
m i m

R k R k
R

R R k

  


    
 

 
 (11) 

We assume in this example, for ease of exposition, that returns are not lognormally but 

normally distributed, with zero drift and equal variance:  20,mR N   and  2~ 0,i N  . 

This is a very small adjustment.4 

If i  is larger than 1, the profile is similar to a buying portfolio with a beta of 1, plus writing 

short-term put options with strike k .  

  

                                                 
4 Daily returns with 20% (annual) volatility have such a small standard deviation that lognormal and normal 

distribution are very similar. The largest deviation between distribution characteristics relevant here occurs 
between the 0.1% quantiles; they differ by factor 1.02. 
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Figure 4: Exact systemic risk measures for different confidence levels 
Assuming that market returns follow a lognormal distribution with p.a. drift 0.05 and volatility 20%, we analyze daily 
returns of 16 portfolios in four settings, A to D. Portfolios No 16 are defined as follows: 

A16: = 2. No options. 
B16: = 1; –0.45% in one-month put with strike 0.8; 3% in one-month put with strike 1. 
C16: = 2.125; 0.75% in one-month put with strike 0.8 
D16: = 1.375; –4.5% in one-month put with strike 0.7; 5.7% in one-month put with strike 0.725 

Weights for portfolios x.1 to x.16 obtain by linearly adjusting betas to 1, and option weights to zero. The idiosyncratic 
volatility is set to a uniform value of 20%. Option values are determined with Black-Scholes. Marginal expected shortfall 
(MES), CoVaR, and exposure CoVar are calculated for tail probabilities of 0.1%, 1%, 5%, and 10% by analytical and 
numerical means.  
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We compare the CoVaR of this kinked profile to a portfolio that is linear in the market 

portfolio, with a beta of one and the same idiosyncratic risk as in the kinked portfolio. The 

return on this linear portfolio is thus m iR   and is denoted lin
iR . As in Section 3, we derive 

an orthogonal representation of the market risk factor lin0.5m iR R    with   2 / 2    

(here we utilize    m iR      and hence  lin 2iR  ). Conditioning on lin
iR  is now 

straightforward and provides us with  

          lin lin lin 11 2
|

2 2m i i iQ R R Q R Q R Q Q            
 

When we condition on the median, this simplifies to: 

         lin lin lin
0.5 0.5

1

2m i i iQ R R Q R Q R Q Q        (12) 

where  lin
0.5 0iQ R   so that 

      lin 12
0.71 .

2m i mCoVaR R R Q R      (13) 

Now consider an extreme case in which the i  of the kinked portfolio is very large and k  is 

in the left tail of the distribution of mR  but less extreme than the  -quantile. In this “kink” 

case it holds approximately that 

    kink kink
m i i mQ R R Q R Q R     

because the distribution of kink
iR  in the left tail is almost fully determined by the market 

return if i  is large. If kink
iR  is at its  -quantile, we can then infer almost perfectly that the 

market is at its  -quantile as well.  

For determining the CoVaR conditional on kink
iR  being at its median, we distinguish two 

cases:  

In case one, the condition that the portfolio return must take on its median value compresses 
the distribution of the market return more or less completely onto the range above the kink. 
This is true if 

     lin lin
0.5

2
Pr Prm i i

k
R k R Q R k 


 

      
 

  (14) 

Then it does not matter much for the CoVaR whether there is some kink below the relevant 

range so that kink
iR  and lin

iR  have a very similar CoVaR of approximately  Q  . Taking 

(12) into account, we conclude 

       kink 0.29m i m mCoVaR R R Q R Q Q R      , 
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which is less extreme than the ΔCoVaR in the linear benchmark case, despite the fact that the 
downward kink can imply considerable exposure to systematic tail risks.5 

In case two, (14) is not fulfilled so that the kink does play as role for the CoVaR calculations. 
Then we find the approximation 

  kink kink
0.5m i iQ R R Q R k    

which holds because iR  is very unlikely to be at its median if mR  is below k . If mR  were 

below k , the high beta would push iR  so far away from its median that idiosyncratic risk 

could not bring it back, except in very rare cases. ΔCoVaR thus approximately is 

   kink
m i mCoVaR R R Q R k   , 

the size of which can now exceed the one in the linear case: if   shrinks, ΔCoVaR in the 

kink case decreases at the same speed as  mQ R , in contrast to  0.71 mQ R  in the linear 

case, as shown in (13). But still there is a substantial range, approximately if 

   1 0.71 mk Q R  , where the ΔCoVaR of kink
iR  has a smaller absolute value.  

To summarize our example, adding a downward kink to the portfolio’s market sensitivity in 
the lower tail may “confuse” the ΔCoVaR in an undesirable way: less systemic risk is the 
consequence of more downward exposure. In Appendix A.2, we generalize the kink example 

to smooth nonlinearities. When the risk profile is established by a monotonic function h  so 

that  i m iR h R   , we argue that the CoVaR is almost exclusively driven by the steepness 

of the profile in the lower tail, i.e., by the derivative   ' mh Q R , and often in the 

undesirable way, as observed for the kink example. 

The sequence of portfolios in setting C gives a similar picture as in setting B: risk measures 
switch the order if the tail probability is changed, but the MES switches between points other 
than those where CoVaR switches. At the 1% level, MES and CoVaR give a correct 
prediction for the order of 0.1% risk measures. If 1% estimates are not accessible, so that one 
has to rely on higher probability levels, capital surcharges based on such measures would 
create wrong incentives – the larger the hedge in the tail, the more it would be “punished” by 
increased capital requirements. Similar to setting B, extrapolation works well (see Appendix 
A.3). 

If the portfolio profile is more complex, as is the case with setting D, prospects for inferring 
the 0.1% risk measures from the others are even worse. The order of risk measures switches 
below a 1% tail probability and hence within a de facto unobservable region. While the MES 
curves still seem to be accessible to extrapolation (note that variation in convexity at 5% is 
low, however), this cannot be said about the CoVaR curves. They are virtually straight 

                                                 
5 For parameters that bring the kinked profile close to portfolio B16 (for instance, 0.035, 7ik    ), .we 

determined the 0.1% CoVaR through simulations; they confirmed that the approximation correctly captures 

the ordering of the CoVaR.  
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between 1% and 10%, so that little if nothing can be learned from these points about the 
convexity at 1%. In Appendix A.3 we show that our extrapolation fails. 

It is remarkable that, as in setting B, ΔCoVaR assigns the lowest risk to the portfolio with the 
largest short-put positions. Due to the trough-shaped profile for moderately negative returns, 
the effects are more involved than before, and the CoVaR under the median condition 
contributes as much to the effect as the one under the tail condition (unreported). However, 
the arguments of Appendix A.2 can be applied to the latter at least:  when conditioning on an 
extreme quantile, the CoVaR is almost exclusively driven by the steepness of the profile in 
the lower tail, and the CoVaR’s size may shrink while the profile in the tail becomes steeper. 
This happens in the transition from portfolio D1 to D16. 

5.4 Estimation under realistic conditions 

To examine how well the four measures would discriminate between low-risk and high-risk 
portfolios in a practical application, we conduct a simulation study. To facilitate 
interpretation, the analysis is conducted separately for each portfolio setting (A, B, C, or D). 
The analysis has the following structure: 

(1) Choose one of the four portfolio settings A, B, C, or D.  

(2) For the market return and the 16 portfolios of the setting chosen in (1), simulate daily 

returns using the assumptions and portfolios from Section 5.2. For the CoVaR 

computations, aggregate five daily returns to one weekly return. 

(3) Determine the risk measures in line with the choices made in the literature: 

MES:    260 days, 5% confidence level  

CoVaR:   1,300 weeks, 1% confidence level 

Exposure CoVaR: 1,300 weeks, 1% confidence level 

Tail risk gamma:  260 days, put with maturity 4 months and strike 70% 

(4) Repeat steps (1) to (3) 1,000 times. 

Figure 5 plots average estimated risk ranks across the 1,000 trials, along with 90% confidence 
intervals, against the true risk rank. A perfect system, which always identifies the correct 
systemic risk, would imply a diagonal performance line with a zero-width confidence 
interval. For each of the four measures, the true risk rank is based on the 0.1% MES or 0.1% 

exposure CoVaR, which generate the same ranking. The previous section has shown that 

CoVaR reverses these rankings for portfolio settings B and D, but it has also shown that this 

reversal should be attributed to a particularity of the CoVaR definition rather than to 

differences in systemic risk. For this reason, we compare the estimated CoVaR ranks 

against the true risk ranks implied by MES and exposure CoVaR. We do the same for the 

tail risk gamma, which is an empirical measure that involves the choice of certain put 
options; it cannot be used directly to infer a correct risk ranking for some confidence level. 
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Figure 5: Simulated performance of systemic risk measures  
Assuming that market returns follow a lognormal distribution with p.a. drift 0.05 and volatility 20% we simulate daily returns of 16 
portfolios in four settings, A to D. Portfolios 16 are defined as follows: 

A16: = 2. No options. 
B16: = 1; –0.45% in one-month put with strike 0.8; 3% in one-month put with strike 1. 
C16: = 2.125; 0.75% in one-month put with strike 0.8 
D16: = 1.375; –4.5% in one-month put with strike 0.7; 5.7% in one-month put with strike 0.725 

Weights for portfolios x.1 to x.16 obtain by linearly adjusting betas to 1, and option weights to zero. Idiosyncratic volatility is set to a 
uniform value of 20%. Option values are determined with Black-Scholes. Marginal expected shortfall (MES, 5%) and tail risk gammas are 
estimated with 260 daily returns; CoVaR and exposure CoVaR (1%) with 1300 weekly returns. Simulation and estimation are repeated 
1,000 times. The figures plot average estimated risk ranks, along with 90% confidence intervals, against the true risk rank as measured by 
MES (0.1%) and exposure CoVar (0.1%). 

A Portfolios 

 
B Portfolios  

 
C  Portfolios 

 
 

D Portfolios 

 

In Setting A, in which portfolios differ only by their beta, the MES and the two CoVaR 

measures manage to identify the correct risk rank on average. The width of the 90% 

confidence intervals is around five for MES and exposure CoVaR, meaning that most 

incorrect ranks differ by less than +/– 3.  CoVaR provides a less reliable ranking but also 

gets the ranking right on average. In contrast, the performance line of the tail risk gamma is 
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flat, which implies that a random ordering would perform equally well. Since the gamma 
measures tail risk after controlling for market beta, however, this is what we would expect. 
The return profile is linear, so there is nothing left that could be detected by the gamma. 
When combined with the standard beta estimate, the gamma would result in a correct 
ordering.  

In summary, the results from the first setting appear promising; and the confidence intervals 
give a good benchmark for the magnitude of the estimation error that we would expect under 
ideal conditions, i.e. if return profiles are linear in the market. 

The picture changes when portfolios with options are examined. Recall that in setting B, a 
short position in out-of-the-money puts is combined with a long position in at-the-money 
puts. MES as well as the two CoVaR measures typically order the portfolios in the wrong 
way. On average, the least risky portfolio is judged to be the portfolio with the highest risk. 

The extent of mis-estimation is most pronounced for exposure CoVaR. The explanation is 

straightforward. Portfolios with larger option weights have a larger tail risk, but when 
moderately negative, their returns are less pronounced than the market returns. The 

confidence levels defining the MES and CoVaR chosen for the estimation are not extreme 

enough to capture what is going on in the tail. The weak discriminatory power is consistent 
with Figure 4 where the exact 5% MES of all B portfolios are close neighbors (similar for 
exposure CoVaR). The tail risk gamma, on the other hand, does a good job in discriminating 
risks. The return profile is concave over the entire domain; as is the profile of the put option 
that is used in the regression. The tail risk gamma can therefore provide a good estimate of 
the portfolio’s curvature, which in turn is monotonically related to the tail risk. When taking 
the width of the confidence intervals into account, however, the performance of the rail risk 
gamma is inferior to the one of the well-performing measures in the linear case.  

In setting C, portfolios differ in their protection. The portfolios have a J-shaped return profile. 

The relative performance is similar to setting B. Exposure CoVaR performs worst, followed 

by MES and CoVaR. Again, this conforms to Figure 4 where all 5% MES for C portfolios 

almost coincide. The explanation for this pattern is analogous to setting B. In setting C, return 
profiles are convex rather than concave. Due to the high confidence levels, MES and 

CoVaR overestimate the risk of portfolios with a high curvature. The tail risk gamma 

performs well, and better than in setting B. This can be explained by noting that the portfolios 
in B contain two options, while the C portfolios contain only one option. As the regression 
used for the estimation of the tail risk gamma contains only one option, the curvature 
estimates derived from the regression are better in the C setting. 

The final panel squashes the hopes that there always is at least one measure that provides a 
good ranking of risks. The return profiles of the D portfolios are concave in the extreme tail 
but convex in the remaining part. The estimation methods mainly use observations from the 
convex part, and therefore do not get the ordering right. As is evident from Figure 4 and the 
return profiles shown in Section 5.2, errors would be economically significant. The high-risk 
portfolios, which are mostly judged to be the least risky by the four measures, embody much 
greater tail risk.  
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6 Conclusion 
We started our analysis of return-based systemic risk measures by examining whether they 
adequately indicate differences in systematic risk, idiosyncratic risk, or contagion.  The 
ΔCoVaR measure suggested by Adrian and Brunnermeier (2011) assigns a lower systemic 
risk as idiosyncratic risk is increased. In the examples studied here, it also assigns a higher 
systemic risk to infected banks, whereas marginal expected shortfall and tail risk gamma do 
the opposite.  

We then explored how limited data availability typical of practical applications may inhibit 
the measures’ performance. Typical data sets available for estimating systemic risk do not 
include a sufficient number of extreme events. Hence, relying on observations of less extreme 
events is unavoidable. We use positions in standard index options to illustrate that this can 
lead to serious misestimation of systemic risk. It is possible to take large tail risks that remain 
nearly invisible in the estimated risk measures. To make matters worse, options can be used 
to diminish losses in regions from where most of the data for the empirical risk measures are 
collected, so that systemic risk appears to be very low even though it is extremely high. On 
the other hand, protective put strategies that are immune to extreme shocks can be judged to 
have high systemic risk because estimation methods rely on less extreme return realizations 
in which option premia depress returns relative to unprotected institutions.  

Some improvement might be achieved by modeling the relationship between extreme and 
less extreme quantiles. For example, it would be possible to calculate a range of risk 
measures based on tail probabilities between 1% and 10%, laying a smooth curve through 
them, and evaluating them at 0.1%. However, whatever the extrapolation method is – once 
market participants know it, they might be able to dupe it by bespoke derivatives positions.  

Together, these observations raise doubts about the informativeness of the proposed 
measures. In particular, a direct application to regulatory capital surcharges for systemic risk 
could create wrong incentives for banks. We conclude that regulatory capital surcharges for 
systemic risk should not rely exclusively on market-based measures of systemic risk, and that 
more work needs to be done in order to assess the reliability of information that can be drawn 
from a return-based analysis of systemic risk.  

A Appendix 

A.1 Sensitivity analyses of the MES 

We are interested in the sensitivity of MES under the linear model of Section 3 to the 
idiosyncratic risk of a single bank, leaving everything else constant. Idiosyncratic risk is 

measured by  2
i  . The MES in the linear model is given by  

 i i s s SMES a b E R R Q    
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We notice  sE R   and rewrite the conditional expectation to 

     s s S s ZE R R Q R E Z Z Q       

where Z  is standard normal. The expectation on the right-hand side depends on   only and 

is negative for the   of interest. Setting  ZC E Z Z Q    we obtain 

   i i sMES a b R C     (15) 

Standard calculus shows that the partial derivative of ib  to  2
i   is positive. Because 

 sR  grows with  2
i   and C  is negative, the term in parentheses decreases; it is also 

negative for relevant parameter choices, as can be seen from the estimate 

        2 2 1 2 ,s iR C F N C F C                  

again taking into account that C  is negative. As 0.05C  is already smaller than –2 and even 

more negative for more extreme confidence levels, we would have to have a market where 
the index has a drift more than twice as large as its volatility. This is very unusual. Assuming 

that the parentheses term in (15) is indeed negative, the growing 1b  makes the magnitude of 

the MES grow when idiosyncratic risk rises. 

A.2 Sensitivity analysis of the ΔCoVaR 

To gain more insight into the way the ΔCoVaR may depend on option positions, we use the 
market model of Section 5.2 and replace the example of a kinked risk profile as in (11) by a 
smooth profile. We assume that the sensitivity of the portfolio return on the market return is 
expressed by  

   ,i m iR h R    (16) 

where h  is a smooth, strictly increasing function, as it is given for the portfolio types A and 

B. 

First, we look at the case of zero idiosyncratic risk. This turns mR  and iR  into co-monotonous 

variables so that their quantiles are strictly linked:     i mQ R h Q R  . Under 

  i iR Q R , the market return is deterministic, and we have, introducing   1h   as the (also 

strictly increasing) inverse of h , 

 

                     
   

1 1 1 1
1/2 1/2

1/2 .

i
i i m m

m m

CoVaR h Q R h Q R h h Q R h h Q R

Q R Q R

  



       

 
(17) 

Since h  has no effect on the distribution of mR , formula (17) shows that the ΔCoVaR does 

not react on the shape of h  at all, provided it is strictly increasing. Adding any monotonicity-

preserving downward bias to the risk profile, for instance by additional put options held short, 
is neglected by the ΔCoVaR. 
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Now let us add idiosyncratic risk. If it is not too large, we can approximate the CoVaR by 

linearizing h  in the tail. The CoVaR would be the ideal point of a Taylor expansion but is yet 

unknown, of course. We take  mQ R  instead, the CoVaR in the absence of idiosyncratic 

risk. This gives  

         'i a m a m m a m i m iR h Q R h Q R R Q R a b R        

  
with        'a m a m a ma h Q R h Q R Q R    and   ' a mb h Q R  . Recalling that mR  and i  

are independent, the linearization also provides us with an approximation for the quantile of 

iR : 

        1 2 2 2 1 .i i m iQ R a R a b                (18) 

To condition on iR , we need an orthogonal representation 

 m iR c R d      (19) 

that fulfills  cov , 0iR  
 

and
   0 E . Resolving (19) to   and putting it into the 

covariance condition gives 

 
2

2
m

i

b
c

R








 

and, combining this with the expectations of mR  and  , 

     1m id E R E c R c b c a          , 

where   is the expectation of mR . As ic R  and   must be orthogonal, their variances add up 

to the one of mR , implying  

   
2 2

2 2 2
2

var m i
m i

i

c R
R 

  


  
. 

As mR  is now represented as an approximate sum of two orthogonal components   and iR , 

the former is unaffected when we condition on the latter. Using (18), we obtain 

 

             
   

       

1 1

1

2
1

2

m i i i i

i

m i
m i

i i

Q R R Q R c Q R d Q c a R d

c R c a d

b
R R

         

    



    

  

    
 

 





         

      

   

 

and, with m ig b   , 

     1
22

1
1 .

11
m i i m

g
Q R R Q R

gg


 


 
     


 (20) 
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Given typical relative sizes of volatilities and drift, the second term is very small compared to 

the first.6 If b  grows (and so g  proportionally) while market and idiosyncratic risk remain 

fixed, the first (negative) term decreases for 1g  , increases for larger values, and 

converges from below to  1 1m    . This means, increasing the portfolio’s market 

sensitivity in the tail – be it by raising i  or by increasing an option position with positive 

delta – can make the magnitude of the CoVaR shrink. 

An important observation is that the approximate CoVaR does not depend on a , which is 

the intercept of the linearization of h . The invariance to the intercept has an interesting 

consequence. Assume the bank holds a digital option short that pays if the market falls below 
some threshold. Given also a short time to maturity, the option delta is nearly flat outside a 
small range around the trigger point. If the probability that the option pays is remote enough 

from the CoVaR’s confidence level (above or below), the steepness b  of the risk profile 

relevant for the CoVaR would remain nearly unaffected by the existence – and the size – of 

the short digital option position. The option does have impact on a , but that has a negligible 

one on CoVaR. 

In order to calculate the ΔCoVaR, which requires the CoVaR under iR  being at its median, 

another linearization can be performed with the median of mR  as expansion point. The linear 

approximation has then a steepness of 0.5b  (also defining 0.5 0.5 m ig b   ), which finally 

gives 

 

     

 

0.5

1

2 2
0.5

1 1
1

1 1

m i i m i i

m

CoVaR Q R R Q R Q R R Q R

g

g g
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



 

    

 
     
   

 (21) 

where the drift terms were ignored for their relatively small extent.  

Let us now look at the particular case of the B portfolios. Their function h  (represented by 

the solid line in the right upper panel of Figure 3 on page 19) is increasing and concave, and 

hence steeper in the left-hand tail of mR  than at its median. The more options are 

proportionally added in the transition from portfolio B1 to B16, the larger b  becomes (for 

instance, 0.01b  grows from 1 to 2.45), and the smaller becomes 0.5b  (it shrinks from 1 to 0.69). 

Both CoVaRs in (21) show the wrong trend; the ΔCoVaR does so accordingly.  

In the case of portfolio type A with linear risk profiles, equation (21) is precise, with a 

uniform ib  , and we obtain 

                                                 
6 Recall that we deal with a return horizon from 1 to 5 days. For daily returns, annual volatilities of the order 

of 20% transform into standard deviations of 20% / 260 1.2% , whereas drifts of 10% transform into 

10% / 260 0.038% . 
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, 

with effects as analyzed in Section 3: while increasing the portfolio’s beta is now accounted 
for by ΔCoVaR becoming more negative, i.e., in the correct way, increasing the idiosyncratic 
risk makes the absolute value of the ΔCoVaR shrink, ceteris paribus. 

A.3 Extrapolating systemic risk measures over confidence levels 

In this appendix we provide an example of an extrapolation from MES and exposure CoVaR 
for higher confidence levels to the 0.1% level. We use the setup of Section 5.3 and examine 
exact risk measures evaluated at confidence levels 1%, 5%, and 10% as nodes. These values 
on the x-axis are represented on a logarithmic scale. Afterwards, a parable is laid through the 

three nodes and evaluated at  log 0.1% . This is the extrapolation value of the 0.1% risk 

measure.  

In Figure 6, solid lines represent correct MES or CoVaR under varying confidence levels. 
Dashed lines represent the fitted parables which coincide with their correct counterparts at 
those points in the right-hand half of each graph which are marked by filled symbols. 
Extrapolation values are marked by blank symbols. 

While this extrapolation method performs well in setting A to C – in particular, it generates 
the right risk ranking within each setting – the last setting D sharply contrasts with the others. 
As in the main part of the analysis, a reversed risk ranking is suggested. 
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Figure 6: Extrapolating exact risk measures from moderate to extreme confidence levels 
Confidence levels of 1%, 5%, and 10% build grid points on a logarithmic scale. Solid lines represent correct MES and exposure ΔCoVaR 
under varying confidence levels. The risk measure on 0.1% level is approximated by an extrapolating parable. Dashed lines represent the 
fitted parables which coincide with their correct counterparts at those points in the right-hand half of each graph which are marked by filled 
symbols. Extrapolation values are marked by blank symbols. 
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